Fusion Estimation Method for Vehicle Centroid Sideslip Angle Based on Adaptive Square-Root Cubature Kalman Filtering

Miao Zhang, Jiangbo Zhao*, Junzheng Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

To address the issues of computational interruptions and unknown noise statistical properties when using the Cubature Kalman Filter (CKF) method to estimate the vehicle centroid sideslip angle, this paper delivers a fusion estimation method based on Adaptive Square-Root Cubature Kalman Filter (ASRCKF). First, vehicle dynamics and kinematics models are established separately, and ASRCKF algorithms are used to design dynamic model estimators and kinematic model estimators for vehicle state estimation. On this basis, the advantages of both dynamic and kinematic model estimators are fully combined through adaptive weight dynamic adjustment to obtain more accurate estimates of the vehicle centroid sideslip angle. Simulation and real vehicle test results indicate that the designed estimation method effectively improves the precision of vehicle state estimation.

源语言英语
主期刊名Proceedings of 2024 IEEE International Conference on Unmanned Systems, ICUS 2024
编辑Rong Song
出版商Institute of Electrical and Electronics Engineers Inc.
1215-1221
页数7
ISBN(电子版)9798350384185
DOI
出版状态已出版 - 2024
活动2024 IEEE International Conference on Unmanned Systems, ICUS 2024 - Nanjing, 中国
期限: 18 10月 202420 10月 2024

出版系列

姓名Proceedings of 2024 IEEE International Conference on Unmanned Systems, ICUS 2024

会议

会议2024 IEEE International Conference on Unmanned Systems, ICUS 2024
国家/地区中国
Nanjing
时期18/10/2420/10/24

指纹

探究 'Fusion Estimation Method for Vehicle Centroid Sideslip Angle Based on Adaptive Square-Root Cubature Kalman Filtering' 的科研主题。它们共同构成独一无二的指纹。

引用此