Visual Loop Closure Detection with Thorough Temporal and Spatial Context Exploitation

Jiaxin Li, Zan Wang, Huijun Di, Jian Li*, Wei Liang*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Despite advancements in visual Simultaneous Localization and Mapping (SLAM), prevailing visual Loop Closure Detection (LCD) methods primarily rely on computationally intensive image similarity comparisons, neglecting temporal-spatial context during long-term exploration. To address this issue, we propose TOSA, a novel visual LCD algorithm harnessing TempOral and SpAtial context for efficient LCD. Specifically, as the agent explores through time, our approach recurrently updates a latent feature incorporating historical information via a Long Short-Term Memory (LSTM) module. Upon receiving a query frame, TOSA seamlessly fuses the latent feature with the query feature to predict the candidates' distribution, thus averting intensive similarity computation. Additionally, TOSA integrates a temporal-spatial convolution for candidate refinement by thoroughly exploiting the temporal consistency and spatial correlation to enhance selected candidates, further boosting the performance. Extensive experiments across four standard datasets showcase the superiority of our method over existing state-of-the-art techniques, demonstrating the effectiveness of utilizing rich temporal-spatial contexts.

源语言英语
主期刊名2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
出版商Institute of Electrical and Electronics Engineers Inc.
10153-10158
页数6
ISBN(电子版)9798350377705
DOI
出版状态已出版 - 2024
活动2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, 阿拉伯联合酋长国
期限: 14 10月 202418 10月 2024

出版系列

姓名IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(电子版)2153-0866

会议

会议2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
国家/地区阿拉伯联合酋长国
Abu Dhabi
时期14/10/2418/10/24

指纹

探究 'Visual Loop Closure Detection with Thorough Temporal and Spatial Context Exploitation' 的科研主题。它们共同构成独一无二的指纹。

引用此