Machine Learning Enabled Reusable Adhesion, Entangled Network-Based Hydrogel for Long-Term, High-Fidelity EEG Recording and Attention Assessment

Kai Zheng, Chengcheng Zheng, Lixian Zhu, Bihai Yang, Xiaokun Jin, Su Wang, Zikai Song, Jingyu Liu, Yan Xiong, Fuze Tian*, Ran Cai*, Bin Hu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

A dual-network hydrogel (PGEH) cross-linked via liquid metal induction was developed exhibiting remarkable mechanical properties and skin-temperature-triggered on-demand adhesion capabilities. The PGEH capacitive sensor demonstrates exceptional sensitivity (1.25 kPa), rapid dynamic response (30 ms), and long-term cycling stability (20,000 cycles), enabling precise monitoring of human motion and reliable signal transmission. Low-impedance electrophysiological sensor (310 ohms) maintains 14-day signal fidelity (25.2 dB), paired with machine learning-based attention monitoring (91.38% of accuracy) for real-time cognitive feedback in focus-demanding scenarios.

源语言英语
文章编号281
期刊Nano-Micro Letters
17
1
DOI
出版状态已出版 - 12月 2025

指纹

探究 'Machine Learning Enabled Reusable Adhesion, Entangled Network-Based Hydrogel for Long-Term, High-Fidelity EEG Recording and Attention Assessment' 的科研主题。它们共同构成独一无二的指纹。

引用此