Kinetic Network Models to Elucidate the Kinetic-Controlled Molecular Assembly Processes

Lingyu Zhang, Yijia Wang, Xiaoyan Zheng*

*此作品的通讯作者

科研成果: 期刊稿件文献综述同行评审

摘要

Organic molecular assembly is a fundamental protocol for constructing organic functional materials at time and length scales beyond individual molecules. Following a bottom–up strategy, organic nanostructures with diverse morphologies and specific functionalities could be obtained. However, the flexible conformations and the cooperative interplay of different noncovalent interactions, lead to countless kinetically metastable states and make the precise prediction of assembled nanostructures extremely challenging. In this review, the theoretical backgrounds and a general theoretical protocol of kinetic network models (KNMs) are first introduced. Then, the molecular assembly mechanism and its regulation are presented for various molecular assembly systems ranging from small molecules (e.g., surfactants, lipids, metal complexes, and ice nuclei) to block copolymers and patchy particles, and further to peptides. For each assembly system, the distribution of metastable structures and the kinetically assembled pathways of the assembly process, as well as the relationship between kinetic pathways preferences and the finally assembled nanostructures are presented. Therefore, it is crucial for a deeper understanding of assembly mechanism and it paves an effective way for the precise control of assembled nanostructures kinetically, which benefits the fabrication of advanced organic functional materials.

源语言英语
期刊Chemistry - An Asian Journal
DOI
出版状态已接受/待刊 - 2025
已对外发布

指纹

探究 'Kinetic Network Models to Elucidate the Kinetic-Controlled Molecular Assembly Processes' 的科研主题。它们共同构成独一无二的指纹。

引用此