ISAR Imaging Based on Probabilistic Pattern-Coupled Sparse Bayesian Learning

Juan Zhao*, Xia Bai, Zichen Ning

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper we consider the inverse synthetic aperture radar (ISAR) imaging. To obtain high resolution target images, a novel probabilistic pattern-coupled sparse Bayesian learning (P-PCSBL) algorithm is proposed, which uses a probabilistic coupled prior model to represent the block sparse structural characteristics of ISAR images. The P-PCSBL algorithm is derived by variational Bayesian inference technique, where a decay factor is introduced to make the reconstructed signal sparser, thereby enabling the P-PCSBL to have the ability of suppressing noise. Simulation experiments demonstrate that the P-PCSBL has robust block sparse recovery performance and can obtain high quality ISAR images under low signal-to-noise ratio.

源语言英语
主期刊名IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798331515669
DOI
出版状态已出版 - 2024
活动2nd IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024 - Zhuhai, 中国
期限: 22 11月 202424 11月 2024

出版系列

姓名IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024

会议

会议2nd IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2024
国家/地区中国
Zhuhai
时期22/11/2424/11/24

指纹

探究 'ISAR Imaging Based on Probabilistic Pattern-Coupled Sparse Bayesian Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此