Fe-doping accelerated magnesium storage kinetics in rutile TiO2 cathode materials

Qianwei Zhang, Xin Liu, Changliang Du, Mingwei Jin, Lifen Yang, Rong Jiang, Xilan Ma, Youqi Zhu*, Chuanbao Cao, Meishuai Zou

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

Rutile titanium dioxide (TiO2) is theoretically favored as the efficient cathode materials for magnesium secondary batteries, yet rarely reported due to sluggish kinetics, low capacity, and inferior reversibility. Herein, a defect engineering strategy is developed via cationic Fe-doping to enhance the electrochemical magnesium storage kinetics of the rutile TiO2 cathode materials and achieve the surface Mg2+ adsorption/diffusion mechanism. Abundant oxygen vacancies can be generated by Fe cations in rutile TiO2 via a molten salt flux method. The optimized rutile TiO2 cathode materials show large specific capacity of 204.8 mAh/g at current density of 100 mA g−1, higher than that of the TiO2-based counterparts reported previously. Additionally, the Mg2+ diffusion coefficient of Fe-doped rutile TiO2 cathode materials are significantly improved to enable rapid magnesium storage. Fe cations can activate the cathode surface and weaken the Coulombic interactions between Mg2+ and anions in the host material. Oxygen vacancies can provide active adsorption sites for Mg2+ and MgCl+ to avoid slow solid-state diffusion and thus accelerate magnesium storage kinetics. Ex-situ XRD and XPS indicate that Fe-doped rutile TiO2 cathode materials undergo the energy storage mechanism of Mg2+ adsorption/diffusion without phase transition or significant lattice expansion.

源语言英语
文章编号155812
期刊Chemical Engineering Journal
498
DOI
出版状态已出版 - 15 10月 2024
已对外发布

指纹

探究 'Fe-doping accelerated magnesium storage kinetics in rutile TiO2 cathode materials' 的科研主题。它们共同构成独一无二的指纹。

引用此