ASD-Diffusion: Anomalous Sound Detection with Diffusion Models

Fengrun Zhang, Xiang Xie*, Kai Guo

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Unsupervised Anomalous Sound Detection (ASD) aims to design a generalizable method that can be used to detect anomalies when only normal sounds are given. In this paper, Anomalous Sound Detection based on Diffusion Models (ASD-Diffusion) is proposed for ASD in real-world factories. In our pipeline, the anomalies in acoustic features are reconstructed from their noisy corrupted features into their approximate normal pattern. Secondly, a post-processing anomalies filter algorithm is proposed to detect anomalies that exhibit significant deviation from the original input after reconstruction. Furthermore, denoising diffusion implicit model is introduced to accelerate the inference speed by a longer sampling interval of the denoising process. The proposed method is innovative in the application of diffusion models as a new scheme. Experimental results on the development set of DCASE 2023 challenge task 2 outperform the baseline by 7.75%, demonstrating the effectiveness of the proposed method.

源语言英语
主期刊名Pattern Recognition - 27th International Conference, ICPR 2024, Proceedings
编辑Apostolos Antonacopoulos, Subhasis Chaudhuri, Rama Chellappa, Cheng-Lin Liu, Saumik Bhattacharya, Umapada Pal
出版商Springer Science and Business Media Deutschland GmbH
343-355
页数13
ISBN(印刷版)9783031781186
DOI
出版状态已出版 - 2025
活动27th International Conference on Pattern Recognition, ICPR 2024 - Kolkata, 印度
期限: 1 12月 20245 12月 2024

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15331 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议27th International Conference on Pattern Recognition, ICPR 2024
国家/地区印度
Kolkata
时期1/12/245/12/24

指纹

探究 'ASD-Diffusion: Anomalous Sound Detection with Diffusion Models' 的科研主题。它们共同构成独一无二的指纹。

引用此