A Deep Learning Neural Network Control Approach for Quadrotor UAV Landing on a Moving Platform

Jiahan Peng, Kewei Xia*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

A deep learning control approach for autonomous landing of the quadrotor unmanned aerial vehicle (UAV) is investigated. First, the error position dynamics concerning the moving target and the error attitude dynamics are described. Then, the force and torque controllers are developed, where the deep learning neural network (DNN) compositing of output-layers, input-layers and modular neural functions is utilized to counteract the system uncertainty. Stability analysis demonstrates that the closed-loop systems are uniformly ultimately bounded. Finally, the proposed strategy is validated through simulation examples.

源语言英语
主期刊名Advances in Guidance, Navigation and Control - Proceedings of 2024 International Conference on Guidance, Navigation and Control Volume 1
编辑Liang Yan, Haibin Duan, Yimin Deng
出版商Springer Science and Business Media Deutschland GmbH
486-495
页数10
ISBN(印刷版)9789819621996
DOI
出版状态已出版 - 2025
活动International Conference on Guidance, Navigation and Control, ICGNC 2024 - Changsha, 中国
期限: 9 8月 202411 8月 2024

出版系列

姓名Lecture Notes in Electrical Engineering
1337 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Guidance, Navigation and Control, ICGNC 2024
国家/地区中国
Changsha
时期9/08/2411/08/24

指纹

探究 'A Deep Learning Neural Network Control Approach for Quadrotor UAV Landing on a Moving Platform' 的科研主题。它们共同构成独一无二的指纹。

引用此