基 于 长 短 时 记 忆 神 经 网 络 的 锂 离 子 电 池 多 维老 化 诊 断

Xian Feng Ren, Wen Wen Yuan, Xue Qiang Wu, Yan Ru Shi, Meng Meng Yao, Kai Xuan Zhang, Rui Xin Yang*, Yue Pan

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Two internal side reactions that have the greatest impact on the battery aging mode are introduced. The negative region equation of the traditional pseudo two-dimensional model is improved,and the electrochemical degradation model of lithium-ion batteries is proposed. The response surface analysis method is applied to establish the aging characteristic parameters that can comprehensively describe the degradation of battery performance. A long short-term memory neural network is established to predict the future capacity. The aging characteristic parameters obtained based on the mechanism model and historical capacity retention rate are as the input of the network. Verification results of capacity forecast show that the prediction error is within 2%.

投稿的翻译标题Multi-dimensional aging diagnosis of lithium-ion battery with a long short-term memory neural network
源语言繁体中文
页(从-至)3135-3147
页数13
期刊Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition)
54
11
DOI
出版状态已出版 - 11月 2024
已对外发布

关键词

  • aging diagnosis
  • aging mechanism modeling
  • lithium-ion battery
  • long short-term memory neural network
  • response surface methodology

指纹

探究 '基 于 长 短 时 记 忆 神 经 网 络 的 锂 离 子 电 池 多 维老 化 诊 断' 的科研主题。它们共同构成独一无二的指纹。

引用此