TY - GEN
T1 - Determination of laser absorption coefficients of gas mixtures using an ab initio md model
AU - Liang, Zhi
AU - Tsai, Hai Lung
AU - Jiang, Lan
N1 - Publisher Copyright:
Copyright © 2007 by ASME.
PY - 2007
Y1 - 2007
N2 - In an effort to study the laser induced dissociation of gas mixtures for an ongoing research project on diamond thin film coating using multiple lasers, it is necessary to determine the absorption coefficient of laser energy by CO2 gas. An ab initio molecular dynamics (AIMD) model is used to determine the laser absorption coefficient of CO2 gas as a function of laser wavelength and gas temperature. The translational, rotational, and vibration motions of molecules are all taken into account in our model. The intra-molecular potential energy is obtained by solving the Kohn-Sham equation. The Projector-Augmented Wave (PAW) exchange-correlation potential function is used in the ab initio calculation. Specific heat of the CO2 gas is also calculated. The calculated thermal properties of CO2 gas and the vibration spectrum of molecules are in good agreement with the experimental results. The calculated normalized absorption line shape CO2 gas is close to the experimental results.
AB - In an effort to study the laser induced dissociation of gas mixtures for an ongoing research project on diamond thin film coating using multiple lasers, it is necessary to determine the absorption coefficient of laser energy by CO2 gas. An ab initio molecular dynamics (AIMD) model is used to determine the laser absorption coefficient of CO2 gas as a function of laser wavelength and gas temperature. The translational, rotational, and vibration motions of molecules are all taken into account in our model. The intra-molecular potential energy is obtained by solving the Kohn-Sham equation. The Projector-Augmented Wave (PAW) exchange-correlation potential function is used in the ab initio calculation. Specific heat of the CO2 gas is also calculated. The calculated thermal properties of CO2 gas and the vibration spectrum of molecules are in good agreement with the experimental results. The calculated normalized absorption line shape CO2 gas is close to the experimental results.
UR - http://www.scopus.com/pages/publications/84928639364
U2 - 10.1115/IMECE2007-41449
DO - 10.1115/IMECE2007-41449
M3 - Conference contribution
AN - SCOPUS:84928639364
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 1013
EP - 1019
BT - Heat Transfer, Fluid Flows, and Thermal Systems
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007
Y2 - 11 November 2007 through 15 November 2007
ER -