Abstract
Transient stability assessments and state prediction are critical tasks for power system security. The increasing integration of renewable energy sources has introduced significant uncertainties into these tasks. While AI has shown great potential, most existing AI-based approaches focus on single tasks, such as either stability assessments or state prediction, limiting their practical applicability. In power system operations, these two tasks are inherently coupled, as system states directly influence stability conditions. To address these challenges, this paper presents a multi-task learning framework based on spatiotemporal graph convolutional networks that efficiently performs both tasks. The proposed framework employs a spatiotemporal graph convolutional encoder to capture system topology features and integrates a self-attention U-shaped residual decoder to enhance prediction accuracy. Additionally, a Multi-Exit Network branch with confidence-based exit points enables efficient and reliable transient stability assessments. Experimental results on IEEE standard test systems and real-world power grids demonstrate the framework’s superiority as compared to state-of-the-art AI models, achieving a 48.1% reduction in prediction error, a 6.3% improvement in the classification F1 score, and a 52.1% decrease in inference time, offering a robust solution for modern power system monitoring and safety assessments.
Original language | English |
---|---|
Article number | 1531 |
Journal | Energies |
Volume | 18 |
Issue number | 6 |
DOIs | |
Publication status | Published - Mar 2025 |
Externally published | Yes |
Keywords
- multi-task learning
- power system transient stability assessment
- state prediction